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Abstract

This paper presents a neural scheme for controlling a bus suspension system. The suspension system,
designed as quarter bus model, is used to simplify the problem to a one-dimensional spring–damper system.
The proposed controller is such that the system is always operating in a closed loop, which should lead to
better performance characteristics. For comparison, PID, PI and PD controllers are also utilized to control
the bus suspension system. Simulation results give superior performance of the proposed neural control
scheme. It was also shown that the designed suspension control system displayed robust performance with
system model uncertainties.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, researchers have been testing a bus axle and suspension system using various
dampers, including adjustable units, for optimal damping. The test results could be integrated into
the phase one tool, along with the capacity to model coupling between axles, suspension, seat, and
driver. The next step would be to validate the enhanced version through on-the-road trials.
A design of a mixed suspension system (an actuator in tandem with a conventional passive

suspension) for the axletree of a road vehicle based on a linear model with 4 degrees-of-freedom
(d.o.f.) has been realized in Ref. [1]. The authors proposed an optimal control law that was aimed
at optimizing the suspension performance while ensuring that the magnitude of the forces
generated by the two actuators and the total forces applied between wheel and body never
exceeded given bounds.
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A simple and convenient matrix expression has been derived for the performance index in the
case of a linear vehicle model with 2 d.o.f. and a preview active suspension, subject to a unit step
road input and employing optimal control [2]. The usual quadratic integral-type performance
index was assumed and the effect of an additional form of constraint was briefly described. The
effects of preview time on the performance index and the optimal feed-forward control were
illustrated graphically for a particular example.
A modified discrete time preview control algorithm for active and semi-active suspension

systems based on a simple mathematical 4 d.o.f. half-car model has been derived by Youn [3]. The
discrete time preview control laws for ride comfort were employed in a simulation. An algorithm
for MIMO system contains control strategies reacting against body forces that occur at cornering,
accelerating, braking, or under payload, in addition to road disturbances.
Construction of an active suspension system for a quarter car model using fuzzy reasoning has

been investigated Ref. [4]. In this research, an active control was utilized as a weighted sum of the
de-fuzzificated values of the outputs in single input rule modules and generated by using a
pneumatic actuator.
A fuzzy controller has been designed for automotive active suspension systems [5]. In this

investigation, a half-car model was employed in order to consider the pitch angle of the body and
the coupling dynamics of front and rear wheels. It was assumed that the three measurements of
body acceleration, front suspension deflection and rear suspension deflection were available.
The fuzzy control rules were separately designed for each measurement. After the fuzzy
control rules were determined, a genetic algorithm was applied to tune the membership
functions of these control rules. The performance of the designed system was evaluated with
respect to these disturbance models, and it has been shown that the designed active suspension
system provided good performance in improving ride quality and maintaining vehicle
manoeuvrability.
A control scheme of an active suspension system using a quarter car model has been proposed

by Kim and Ro [6]. The authors have shown that due to the presence of non-linearities such as a
hardening spring, a quadratic damping force and the ‘tyre lift-off’ phenomenon in a real
suspension system, it was very difficult to achieve desired performance using linear control
techniques. To ensure robustness for a wide range of operating conditions, a sliding mode
controller has been designed and compared with an existing non-linear adaptive control scheme in
the literature. The sliding mode scheme utilizes a variant of a sky–hook damper system as a
reference model which does not require real-time measurement of road input.
An investigation of the variation of vertical vibrations of vehicles using a radial basis neural

network (RBNN) has been presented in Refs. [7,8]. The RBNN was employed to predict the
desired values of amplitude of acceleration for different road conditions such as concrete, waved
stone, block paved and country roads. The proposed neural system was also tested for different
natural frequencies and the ratios of damping.
The problem of the design of a non-linear hybrid car suspension system for ride qualities using

neural networks (NNs) has been presented [9]. In their investigation, a NN controller was
proposed, which corresponded to a Taylor series approximation of the non-linear control
function and the NN was due to the numerous local minima trained using a semi-stochastic
parameter optimization method. Two cases A and B (continuous and discontinuous operation)
were investigated and numerical examples illustrated design methodology.
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In this paper, an adaptive control scheme was investigated to control a bus suspension
system. The robustness of the proposed scheme was presented through computer
simulation and the efficacy of the scheme is shown both in the time and amplitude
domains.
The paper is organized in the following manner. Section 2 gives the main structure of the

suspension system used. Standard PID and neural network control methods are presented in
Section 3. Simulation results and discussion of the control schemes are given in Section 4. The
paper is concluded with Section 5.

2. Bus suspension system

Designing an automatic suspension system for a bus turns out to be an interesting control
problem. When the suspension system is designed, a quarter bus model (one of the four wheels) is
used to simplify the problem to a one-dimensional spring–damper system. A schematic diagram of
the suspension system is shown in Fig. 1. Where Y1 is the displacement of the bus body mass, Y2 is
displacement of the suspension mass, W is the road displacement and F is the forces of the bus
body mass and suspension mass. The dynamic parameters of the bus suspension system are given
in Table 1.
An acceptable and good bus suspension system should have satisfactory road holding ability,

while still providing comfort when riding over bumps and holes in the road. When the bus is
experiencing any road disturbance (i.e., potholes, cracks, and uneven pavement), the bus body
should not undergo large oscillations and the oscillations should dissipate quickly. Since the
distance ðY1 � W Þ is very difficult to measure, and the deformation of the tyre ðY2 � W Þ is
negligible, the distance ðY1 � Y2Þ can be used instead of ðY1 � W Þ as the output in this problem.
The road disturbance ðW Þ in this problem would be simulated by a step input. This step could
represent the bus coming out of a pothole.
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Fig. 1. Schematic representation of the suspension model.
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3. Control schemes

For completeness, this section briefly reviews the control schemes, which are PID control,
adaptive control and the adaptive control proposed in this paper.

3.1. PID control

PID control is perhaps the most widely used control method. It can provide fast response, good
system stability and small steady state errors in a linear system with known parameters.
As its name implies, a PID controller consists of three parts: proportional, integral and

derivative. Assuming that each amplitude is completely decoupled and controlled independently
from other amplitudes, the control input FðtÞ is given by

FðtÞ ¼ KPeðtÞ þ KI

Z
eðtÞ dt þ KD

deðtÞ
dt

: ð1Þ

In equation, eðtÞ is the control error

eðtÞ ¼ YdðtÞ � YðtÞ; ð2Þ

where YdðtÞ is the desired car amplitude of displacement and YðtÞ is the current measured car
amplitude. KP is called the proportional gain, KI the integral gain and KD the derivative gain, all
of which are ðn � nÞ diagonal matrices where n ¼ 1 is the number of amplitudes. PID controllers
for articulated buses face two main difficulties, non-linearity and cross-coupling, as can be seen in
the dynamic equations in the appendix.

3.2. Proposed neural controller

The neural networks employed in this work were of the recurrent type. Recurrent networks
have the advantage of being able to model dynamic systems accurately and in a compact form. A
recurrent network can be represented in a general diagrammatic form as illustrated in Fig. 2(a).
This diagram depicts the hybrid hidden layer as comprising a linear part and a non-linear part and
shows that, in addition to the usual feedforward connections, the networks also have feedback
connections from the output layer to the hidden layer and self-feedback connections in the hidden
layer. The reason for adopting a hybrid linear/non-linear structure for the hidden layer will be
evident later.
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Table 1

Dynamic parameters of the suspension system

Parameter Value

Bus body mass ðm1Þ 2500 kg

Suspension mass ðm2Þ 320 kg

Spring constant of suspension ðk1Þ 80 000 N=m
Spring constant of wheel and tire ðk2Þ 500 000 N=m
Damping constant of suspension ðc1Þ 350 Ms=m
Damping constant of wheel and tyre ðc2Þ 15 020 Ms=m
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At a given discrete time t; let uðtÞ be the input to a recurrent hybrid network, yðtÞ; the output of
the network, x1ðtÞ the output of the linear part of the hidden layer and x2ðtÞ the output of the non-
linear part of the hidden layer.
The operation of the network is summarized by the following equations (also see Fig. 2(b)):

x1ðt þ 1Þ ¼ WI1uðt þ 1Þ þ bx1ðtÞ þ aJ1yðtÞ; ð3Þ

x2ðt þ 1Þ ¼ FfWI2uðt þ 1Þ þ bx2ðtÞ þ aJ2yðtÞg; ð4Þ
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Fig. 2. (a) Recurrent hybrid network structure, (b) Block diagram of recurrent hybrid network.
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yðt þ 1Þ ¼ WH1x1ðt þ 1Þ þWH2x2ðt þ 1Þ; ð5Þ

where WI1 is the matrix of weights of connections between the input layer and the linear hidden
layer, WI2 is the matrix of weights of connections between the input layer and the non-linear
hidden layer, WH1 is the matrix of weights of connections between the linear hidden layer and the
output layer,WH2 is the matrix of weights of connections between the non-linear hidden layer and
the output layer, Ff g is the activation function of neurons in the non-linear hidden layer and a
and b are the weights of the self-feedback and output feedback connections. J1 and J2 are
respectively ðnH1 � nOÞ and ðnH2 � nOÞ matrices with all elements equal to 1, where nH1 and nH2

are the numbers of linear and non-linear hidden neurons, and nO; the number of output neurons.
If only linear activation is adopted for the hidden neurons, the above equations simplify to

yðt þ 1Þ ¼ WH1xðt þ 1Þ; ð6Þ

xðt þ 1Þ ¼ WI1uðt þ 1Þ þ bxðtÞ þ aJ1yðtÞ: ð7Þ

Replacing yðtÞ by WH1 xðtÞ in Eq. (7) gives

xðt þ 1Þ ¼ ðbIþ aJ1WH1ÞxðtÞ þWI1uðt þ 1Þ; ð8Þ

where I is a nH1 � nH1 identity matrix.
Eq. (8) is of the form

xðt þ 1Þ ¼ A xðtÞ þ B uðt þ 1Þ; ð9Þ

where A ¼ bIþ aJWH1 and B ¼ WI1: Eq. (9) represents the state equation of a linear system of
which x is the state vector. The elements of A and B can be adjusted through training so that any
arbitrary linear system of order nH1 can be modelled by the given network. When non-linear
neurons are adopted, this gives the network the ability to perform non-linear dynamic mapping
and thus model non-linear dynamic systems. The existence in the recurrent network of a hidden
layer with both linear and non-linear neurons facilitates the modelling of practical non-linear
systems comprising linear and non-linear parts.
Fig. 3 shows the proposed control system for a bus suspension. The system comprises a P

controller and an NN controller, which is a recurrent hybrid network used to model inverse
dynamics of the suspension system. The NN is trained on-line during the control to make the
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Fig. 3. Block diagram of the proposed neural control system.
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system be able to adapt to changes. Relative amplitude ðR ¼ 0Þ is used as reference signals to the
controller.

4. Simulation results

The performance of the proposed adaptive control scheme is illustrated in this section through
a series of simulations.
The control architecture illustrated in Fig. 2 was implemented on a Pentium III 500 MHz

personal computer using MATLAB software [10]. The dynamic equations of the suspension
system are given in the appendix. The simulation results are presented below. They illustrate the
effects of different controllers on the performance of the control systems.
First, using the proposed neural control system of Fig. 3, the suspension system was controlled.

Structural and learning parameters of the proposed neural network are given in Table 2. From
Fig. 4 the overshoot is initially very small. The output has an overshoot less than 1% and settling
time shorter than 1 s:
Fig. 5 shows results of the PI controller system. Here, the overshoot is small and the settling

time is also short. The output ðY1 � Y2Þ has an overshoot less than 2% and a settling time shorter
than 1:5 s:
Using the PD controller for suspension system, the results of the overshoot and settling time are

shown in Fig. 6. The gain parameters, KP and KD; of the PD controller was obtained by the
Ziegler–Nichols closed-loop method and set to KP ¼ 126 143; KD ¼ 283 452 [11]. From the
figure, the settling time is not stable and overshoot is very big. The output has an overshoot more
than 10% and settling time is long and not stable.
The results are shown Fig. 7 for the case with the PID controller. For comparison, the

performance of the neural controller is illustrated in Fig. 3 with the increased gains. Again, the
gain parameters of the controllers were chosen empirically and again set to KP ¼ 126 143; KI ¼
167 433 and KD ¼ 283 452 [11]. As can be derived from the figures, overshoot and settling time
are not acceptable for practical applications. The system has the output ðY1 � Y2Þ with overshoot
more than 5% and a settling time longer than 3 s:
It can be observed from the above simulation results that the controller developed in this paper

can guarantee the stability of the adaptive system in the presence of the modelling uncertainties
and smaller tracking errors could be achieved with smaller gain parameters of the controller. Also,
the proposed neural control scheme results are better than those of standard control schemes.
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Table 2

Structural and training parameters of neural controllers

Controller Z m a b n N AF

NC 0.0001 0.01 0.8 0.8 6+6 50 000 HT

Note. Z; learning term; m; momentum term; a; feedback gain from output layer to hidden layer; b; feedback gain from

hidden layer to itself; n; linear+non-linear neurons in the hidden layer; N ; iteration numbers; AF ; activation function

for non-linear neurons; HT ; hyperbolic tangent.
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Fig. 4. Amplitude variations of the suspension system using proposed adaptive neural controller.
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Fig. 5. Amplitude variations of the suspension system using proposed adaptive PI controller.
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Fig. 6. Amplitude variations of the suspension system using PD controller.
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5. Conclusion

Suspension systems of buses are multivariable dynamic systems for which it is difficult to derive
mathematical models. Therefore, analytical control schemes based on such models are complex to
construct and generally do not perform well in practice. On the other hand, control schemes
incorporating adaptive controllers that can control the unmodelled part of the suspension
dynamics are simple to realize and can yield accurate control. This paper has described a proposed
neural control scheme for suspensions of the buses. The scheme employs a proposed adaptive
tuning as the controller. Because of its inherent ability to represent dynamics, the controller is easy
to adapt for control tasks. The simulation results obtained have confirmed the feasibility of the
proposed adaptive control scheme and the superior robustness of the decoupled scheme where the
suspension was separately controlled over the coupled scheme where only one controller was
employed for one suspension.
The Model Reference Adaptive Control approach works well and can give better control than a

simple PID scheme when an accurate dynamics model of the system is available. However, in
practical simulations, it is very difficult, if not impossible, for the parameters associated with the
suspension system model to be determined exactly.
Further work should be considered if a robust adaptive neural controller is to be designed to

stabilize the sideways rocking amplitude of the suspension systems. Also, for greater user
confidence, it would be necessary to prove the stability characteristics of the proposed neural
adaptive control schemes theoretically as well as experimentally.
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Appendix A. Equations of motion

From Fig. 1 and Newton’s law, the dynamic equations of the suspension system can be
expressed as follows:

m1
.Y1 ¼ �c1ð ’Y1 � ’Y2Þ � k1ðY1 � Y2Þ þ F ;

m2
.Y2 ¼ �c1ð ’Y1 � ’Y2Þ þ k1ðY1 � Y2Þ þ c2ð ’W � ’Y2Þ þ k2ðW � Y2Þ � F :

A.2. Transfer function equation of suspension system

Assume that all of the initial conditions are zero, so these equations represent the situation
when the bus wheel goes up a bump. The dynamic equations above can be expressed in a form of
transfer functions by taking Laplace transform of the above equations. The derivation from the
above equations of the transfer functions G1ðsÞ and G2ðsÞ of output, Y1 � Y2; and two inputs, F
and W ; is as follows:

ðm1s
2 þ c1s þ k1ÞY1ðsÞ � ðc1s þ k1ÞY2ðsÞ ¼ F ðsÞ;

�ðc1s þ k1ÞY1ðsÞ þ ðm2s
2 þ ðc1 þ c2Þs þ ðk1 þ k2ÞÞY2ðsÞ ¼ ðc2s þ k2ÞW ðsÞ � F ðsÞ;

ðm1s
2 þ c1s þ k1Þ �ðc1s þ k1Þ

�ðc1s þ k1Þ ðm2s
2 þ ðc1 þ c2Þs þ ðk1 þ k2ÞÞ

" #
Y1ðsÞ

Y2ðsÞ

" #
¼

F ðsÞ

ðc2s þ k2ÞW ðsÞ � FðsÞ

" #
;

A ¼
ðm1s

2 þ c1s þ k1Þ �ðc1s þ k1Þ

�ðc1s þ k1Þ ðm2s
2 þ ðc1 þ c2Þs þ ðk1 þ k2ÞÞ

" #
;

D ¼ det
ðm1s

2 þ c1s þ k1Þ �ðc1s þ k1Þ

�ðc1s þ k1Þ ðm2s
2 þ ðc1 þ c2Þs þ ðk1 þ k2ÞÞ

" #
:

Find the inverse of matrix A and then multiple with inputs F ðsÞ and W ðsÞ on the right-hand side as
follows:

Y1ðsÞ

Y2ðsÞ

" #
¼

1

D
ðm2s

2 þ c2s þ k2Þ ðc1c2s2 þ ðc1k2 þ c2k1Þs þ k1k2

�m1s
2 ðm1c2s

3 þ ðm1k2 þ c1c2Þs2 þ ðc1k2 þ c2k1Þs þ k2k1Þ

" #
FðsÞ

W ðsÞ

" #
:

When the control input FðsÞ only was considered, W ðsÞ was set to W ðsÞ ¼ 0: Thus, the transfer
function G1ðsÞ can be written as follows:

G1ðsÞ ¼
Y1ðsÞ � Y2ðsÞ

F ðsÞ
¼

ðm1 þ m2Þs2 þ c2s þ k2

D
:
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When the disturbance input W ðsÞ was only considered, F ðsÞ was set to F ðsÞ ¼ 0: Thus, the transfer
function G2ðsÞ can be written as the following:

G2ðsÞ ¼
Y1ðsÞ � Y2ðsÞ

W ðsÞ
¼

ð�m1c2s
3 � m1k2s

2Þ
D

:
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